

The Story of a Real Zero Energy Building

How Zero Energy Buildings Fit into the Bigger Picture

How the team made it happen

Michael Wolf, PE, CxA, LEED AP BD+C Principal

Amanda Occhi, PE, LEED AP BD+C Engineering Manager (Electrical)

Corey Chinn, PE, CEM, CCP, CxA, LEED AP *Commissioning Manager (Mechanical)*

Learning Objectives

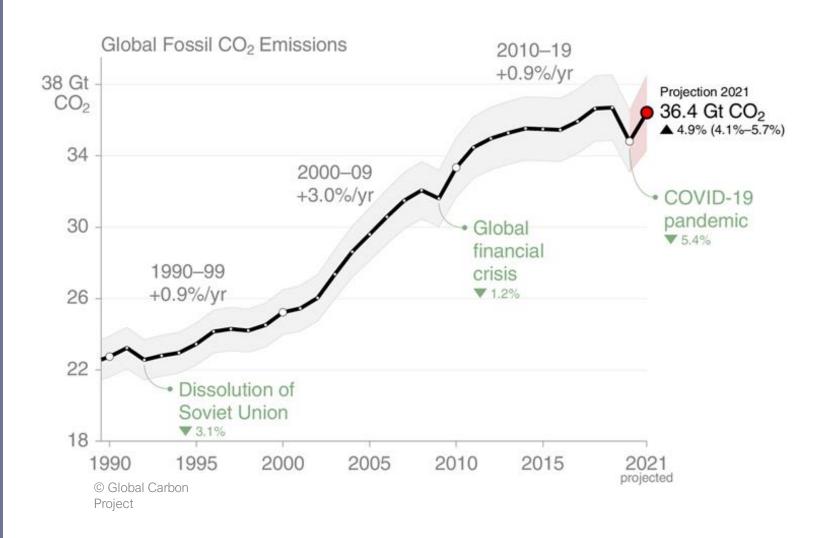
- Understand industry terms for measurement of building energy use
- Learn about the process applied to achieve Zero Energy verification
- Increase knowledge regarding goal setting, energy modeling and integrated design
- Understand how Zero Energy building strategies:
 - Reduce the impact on the environment
 - Impact the project's bottom line
 - Benefit the communities they serve

Why We Need Zero Energy Buildings

66 Question

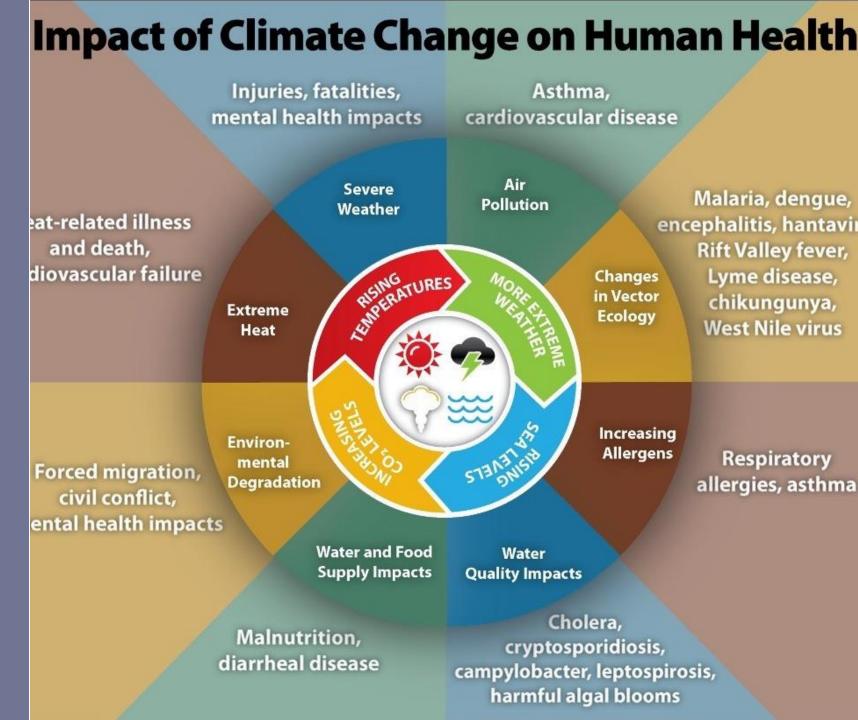
How much did global CO2 emissions drop in 2020 due to the pandemic (from 2019 levels)?

A) 21%


B) 65%

C) 6%

D) 96%


The world shut down and CO2 emissions fell less than 6%!

What is healthcare's responsibility?

Healthcare contributes over 10% of US greenhouse gas emissions. That's equal to 141 coal-fired power plants per year.

Department of Health & Human Services (HHS) is urging health systems to commit to reducing greenhouse gas (GHG) emissions:

50% by 2030

Net zero by 2050

Climate Change & Health

The NEW ENGLAND
JOURNAL of MEDICINE

January 17, 2019

The Imperative for Climate Action to Protect Health

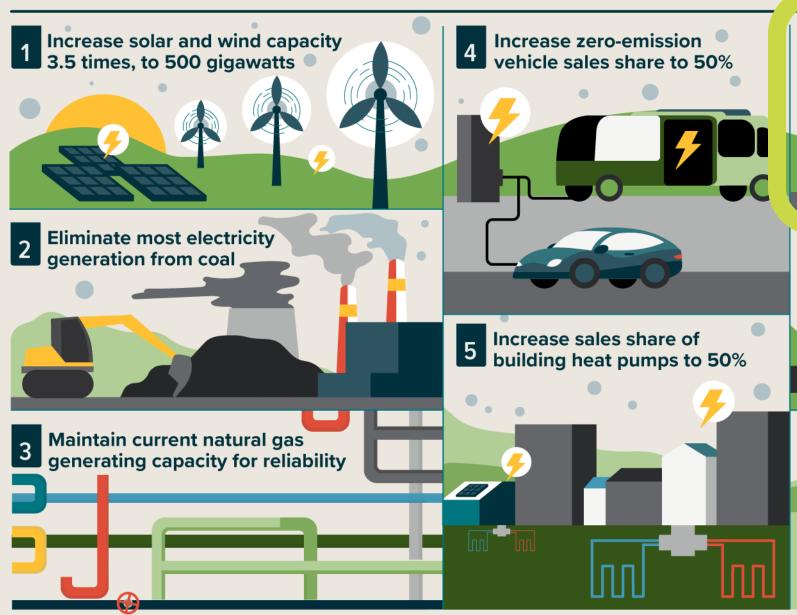
Andy Haines, M.D., and Kristie Ebi, M.P.H., Ph.D.

LIMATE CHANGE IS ALREADY ADVERSELY AFFECTING HUMAN HEALTH and health systems, 1,2 and projected climate change is expected to alter the geographic range and burden of a variety of climate-sensitive health outcomes and to affect the functioning of public health and health care systems. If no additional actions are taken, then over the coming decades, substantial increases in morbidity and mortality are expected in association with a range of health outcomes, including heat-related illnesses, illnesses caused by poor air quality, undernutrition from reduced food quality and security, and selected vectorborne diseases in some locations; at the same time, worker productivity is expected to decrease, particularly at low latitudes. 3,4 Vulnerable populations and regions will be differentially affected, with expected increases in poverty and

Health Care Industry Emissions

Health Care System to Reckon with the Human Costs of Climate Change Health Affairs

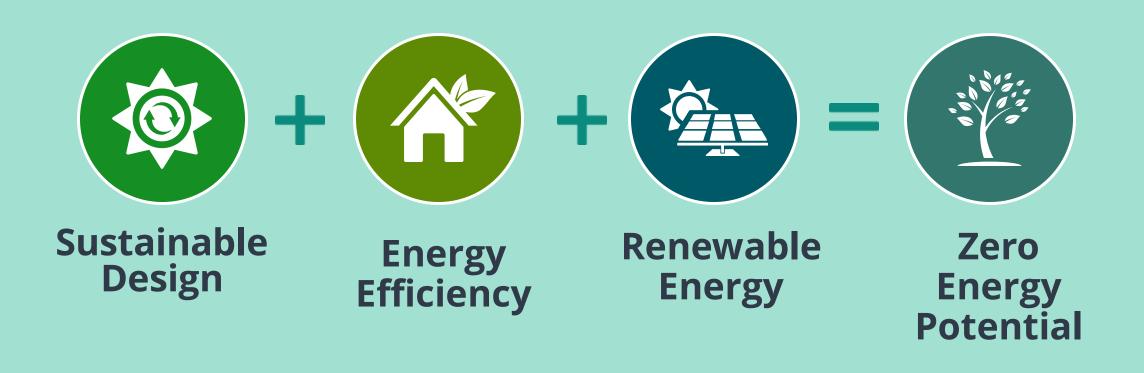
October 16, 2019


The Health Care Industry Paradox

Health care institutions are some of the biggest culprits in climate change. The US health care sector singlehandedly produces about 10 percent of the nation's total annual carbon emissions; in 2011 alone it pumped out 655 million metric tons of carbon dioxide and other greenhouse gases (GHGs). Collectively, it is the 13th-largest producer (1) of carbon dioxide worldwide. A 2018 study estimated that, annually, GHG emissions from large US health care organizations took 123,000 to 381,000 years off of the total life expectancy of the US population. It seems paradoxical that institutions dedicated to healing would play a major role in jeopardizing human health. Yet, health care organizations lag behind every other economic sector in sustainability reporting, a practice that is common among large businesses; more than 78 percent of the S&P 500 issued public reports about environmental stewardship in 2018. Even as the business world embraces greater transparency and accountability regarding climate change, most health care organizations have failed to follow suit.

Getting to Net-Zero Carbon Emissions by 2050

8 actions needed by 2030



Build electricity transmission and pipelines for carbon dioxide and hydrogen gas.

Zero Energy Buildings - How do we do it?

66 Question

How many zero energy buildings are in the US?

A) 5 B) 160 C) 746 D) 2, 567

160

Verified Zero Energy Buildings in USA

591

Emerging Zero Energy Buildings in USA

Source: NBI (New Building Institute)

Zero Energy Healthcare Buildings in US

Zero Net Energy

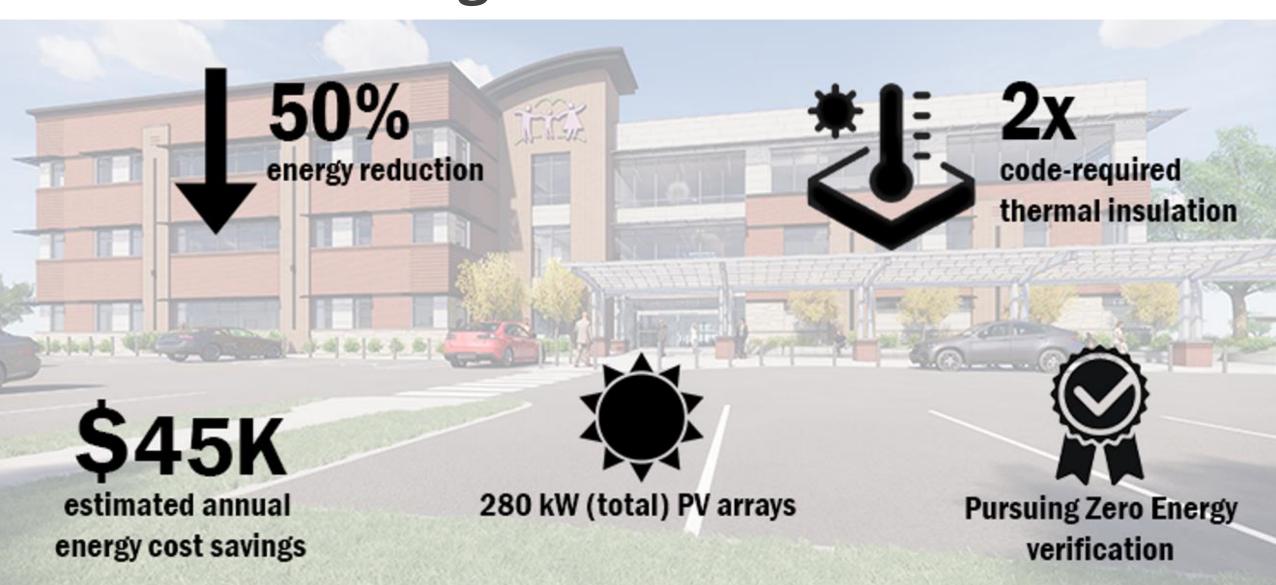
ZE Status	State or Province	Name	Certifications	Citv	Building Type	Size (sf)	Total Site EUI	
Verified	CO	PCHC East Side Clinic		Pueblo	Health Care (Outpa	64,000	22	0
Emerging	CA	ASU Primary Care Clinic		Lancaster	Health Care (Outpa	2,600		
Emerging	CA	Berkeley Mental Health Clinic		Berkeley	Health Care (Outpa	5,260	63	
Emerging	CA	CMC ASU-EOP Mental Health Clinic	LEED	San Luis Obispo	Health Care (Outpa	11,000		
Emerging	CA	CMC East Facility Primary Care Clinic and Health Admi		San Luis Obispo	Health Care (Outpa	13,000		
Emerging	CA	Complex Primary Care Clinic		Lancaster	Health Care (Outpa	5,500		
Emerging	CA	Family Pet Hospital		Clovis	Health Care (Outpa	8,700		
Emerging	CA	San Benito Health Foundation (SBHF)		Hollister	Health Care (Outpa	17,584		
Emerging	CA	Weed Army Community Hospital - National Training Ce		Fort Irwin	Health Care (Inpati	217,000		
Emerging	MA	Soldier's Home		Chelsea	Health Care (Inpati		67	
Emerging	OR	Yellowhawk Tribal Health Center		Pendleton	Health Care (Outpa	63,000		
Emerging	WI	Gundersen Health System	LEED	La Crosse	Health Care (Inpati			

Source: NBI (New Building Institute)

Zero Energy Process and the Results

New East Side Clinic

6.25%

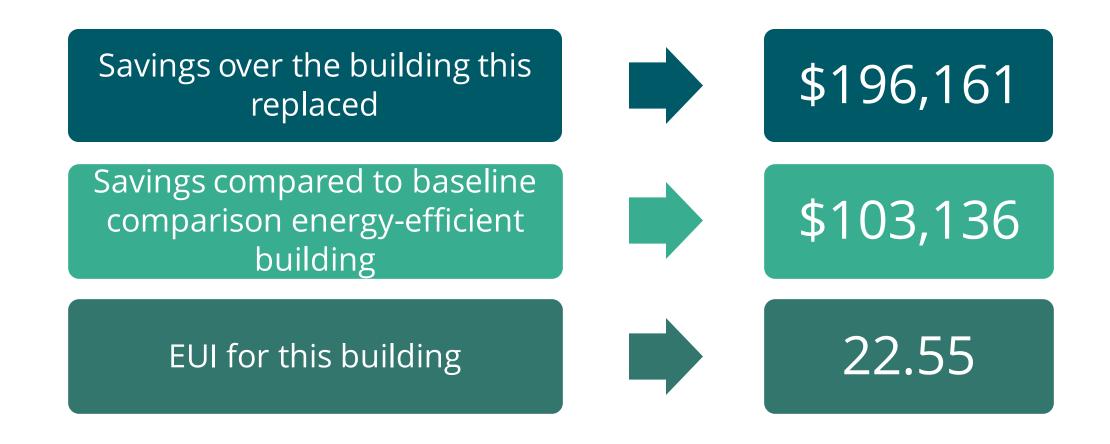

over the cost of traditional construction

13-year payback (baseline)

7-year
payback
(replaced facility)

Big Picture Goals

Building Energy Use What We Measured


Energy Utilization Index (EUI) = kBtu/SF/Yr

How much energy you're using per SF per year

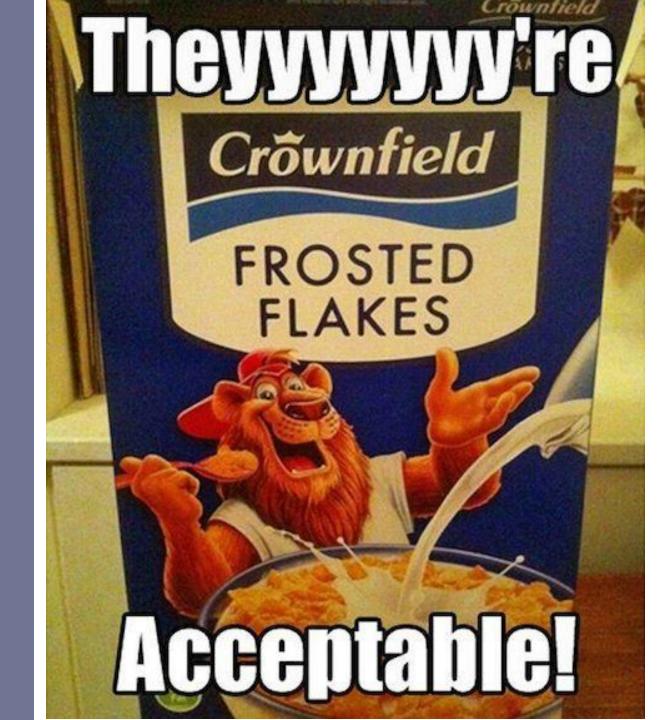
Building was Designed to Save Over \$70,000/ year!

	State MOB Benchmark	In-Network Baseline Building	East Side Project, As Designed
EUI	107 kBtu/SF/Yr	55.5 kBtu/SF/Yr	24 kBtu/SF/Yr
Energy Cost		\$105,000/yr	\$60,562/year (without PV)
On-Site Renewables	N/A	N/A	 PV Energy Reduction: \$31,255/year One-time utility rebate: \$122,522

Results - How the Building Is Actually Performing

Results – How Much Does Electricity Cost?

	Baseline Energy Efficient Building	Building this Replaced	PCHC
Energy Cost	\$2.03	\$3.48	\$0.41/SF/year


How Did Our Team Do This?

Generic Keys to Success

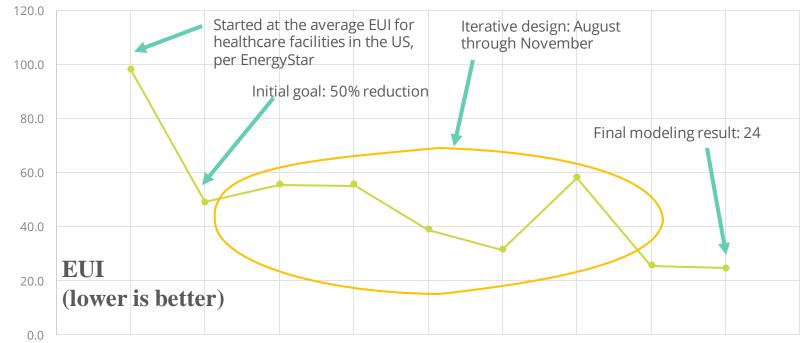
All project teams claim to:

- Set clear goals
- Start early
- Collaborate
- Get Owner buy-in
- Educate
- Define expectations
- Measure & verify

Key Element #1:

Understanding the Owner and how they use the building

- Location
- Culture
- Functional use
- Operations and Maintenance


COLORADO CLINIC					
Building SF	47,054				
Year Constructed	2010				
Electrical EUI (kBtu/SF/year)	36.7				
Blended Electrical Rate (\$/kWh)	0.14				
Natural Gas EUI (kBtu/SF/year)	18.8				
Natural Gas Blended Rate (\$/therm)	\$0.61				
Total Site EUI (kBTU/SF/year)	55.5				
Total Site ECI (\$/SF/year)	\$1.64				
Average Annual Net Energy Cost (\$)	\$77,322.64				

Benchmarking to Baselining

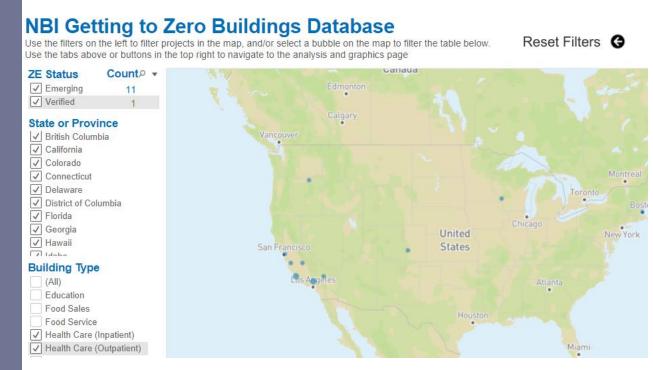
Site EUI through early design

Key Element #2: Executive
Sponsorship

Concern for polluting the communities that PCHC is trying to make more healthy.

Board Vision Community Vision

Business Case


- A Federally Qualified Health Center (FQHC) serving the poor and underserved in Pueblo since 1983.
- 27,000 clients with 125,000 visits (prepandemic), providing medical, behavioral health, dental services, and pharmacy. Historic annual growth of 5-6%.
- Pueblo's East Side identified as area of greatest need. Plans to build replacement began in 2017.

Zero Energy

- Practical Zero Energy
- Verification not certification
- 12 months of operational data (utility bills)

Project Timeline

PRE-DESIGN

Master Plan Refresh

Community Focus Groups

User Groups

Sustainability / Zero Energy Charrette

3P Events (Programming, Exam Room Mock-Ups)

SCHEMATIC DESIGN

Development Plan / Site Amendments

Site Plan

Floor Plans

Elevations

Sustainability / Zero Energy Road Map

DESIGN DEVELOPMENT

Development of the Design

Product Selections

Draft Specifications

Sustainability / Zero Energy Road Map

CONSTRUCTION DOCUMENTS

Finished Drawing Set Fully Coordinated

C------

Specifications

Sustainability / Zero Energy Road Map

Key Element #3: Involve Everyone In Energy Goals

- Gave 30% energy reduction goals to each designer (envelope, lighting, HVAC)
- Iterative review of modeling results

DESCRIP	TION	ASHRAE 90.1 2013 BASELINE PERFORMANCE REQUIREMENTS				INITIAL DESIGN GOALS					AS DESIGNED PERFORMANCE CHARACTERISTICS		
uilding F	Envelope												
Wall Construction Wood 20, 5		Mass: Over Wood Fran	21% Window to Wall Ratio Mass: Overall U-Value - 0.09, Overall R-value - 11.4 Wood Framed: Overall U-value - 0.051, Overall R-value - 20, Steel Framed: Overall U value = 0.055, Overall R value = 18.2				Steel Framed: R-23 (Note find that in our climate going above and beyond with wall insulation sees diminishing returns in the R-22-23 range for buildings with A/C)				nd beyond in ne R-22- m	Brick over stud wall, 3" Polyiso insulation, Fluid applied air and moiture barrier, 6" Metal stud with 2" SPF - R-25 total	
Roof Asser	mbly	Overall R v	n Entirely above value = 30, Att erall R-value -	ttic and other:			' I inculation entirely above deck-				In	Fully Adered TPO with 10" Polyiso Insulation, 1.5" Metal Roof Deck - R-60 total	
		Mass: U-v	DESCRI	PTION	COLOR	ADO CLIN	NIC EQUIPMENT	ELEC	TRICAL REQU	IREM			- 4-
loors		Wood fran	Internal	Loads							i	Jnheated 4" slab-on igid R-10 insulation	
		Slab-On-(Heated: F		ent Loads	1.1 W/S	3F					20	erimeter	,
		SHGC=0.4	Server R	łoom							7		indows -
Windows		all: U Valu	AutoClav	ves	115V: 5	0/60 Hz. 12	2 amp, Max consum	nption	ion:1425 Watts			J-value: 0.21 เมลดะกวา ก.ส.พ.ล	
Skylights	RESPO PARTY	ONSIBLE	DESCRIPTION			ASHRAE 90.1 2013 BASELINE PERFORMANCE REQUIREMENTS			LIGHTING FOOTCANDLE RECOMMENDATIONS		PERFORM	AS DESIGNED PERFORMANCE CHARACTERISTICS	
Shading			Interior Lighting		ting and Electrical Loads						0.42 W/SF	Average	gs between building
'			Office		0.82 W/	/SF		10-15	5-20		0.58		
		- 1	Patient Roo	ame	0 42 W	/SF		5-7 5	5-10		N 71]
RESP(ONSIBLE	ASHR	RAE 90.1 20	013 BASEL	INE PER	FORMANO	CE REQUIREMENT	TS	INITIAL DE	SIGN	GOALS		
1		Exter	rior Lighting										
		600W base allo			ASHRAE 90		0.1 2013 BASELINE		INITIAL DESIGN AS		ESIGNED PER	RFORMANCE CHARA	ACTERISTICS
		Main	Entries 20 \			PERFORMA	ANCE REQUIREMENTS		GOALS				
		-	doors 20 W	HVAC Equipm	nent	1							
			Canopies 0	Building Heat	ting System		AV w/ Reheat, hot-water for neating, 80% thermal effici	ciency	COP=4.0/4.4	COP=	÷4.0		
Electri			ways < 10' v	1		1		t	GSHPs (ClimateMas- ter TE049 or Water-				
Engine	er.		ways < 10 v	Building Cool	ling System	economizer v	AV w/ Reheat, DX cooling, w/ high limit shutoff at 7	75°F, (Furnace Envision^2 Compact 038 w/ECM				
1			ways 1.0W/5	11.0		11.0 IEER	ER		motors) Part/Full: EER=19.3/27.4				
			scaping - 0.	Plumbing Equipment					EEK=17.3/21.4				
			ing Areas 0.	Plumbing Fix	xtures	Standard Wa	ater Use		Efficient Water Use		Standard Water Use for clinical, water efficient fixtures public use fixtures.		cient fixtures for
			ght controls	Domestic Wa	ater Heater	80% Eff, gas	; storage	t	Electric water heater to eliminate on-site combustion	De-su	-		
			ţ	Ventilation					COMBUSTION				
			Ţ	Ventilation M	1ethod	Mechanical		١.	Mechanical ventilation with Energy Recovery		cated outside ai	ir system with energy r	recovery wheel, 8

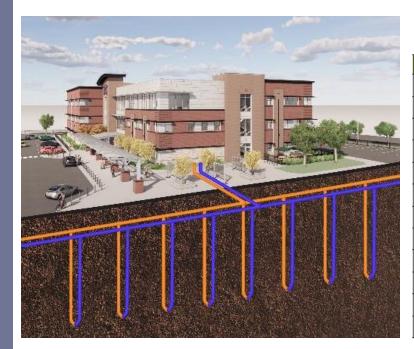
Clearly Document Lock In Expectations

Achieved 50%+

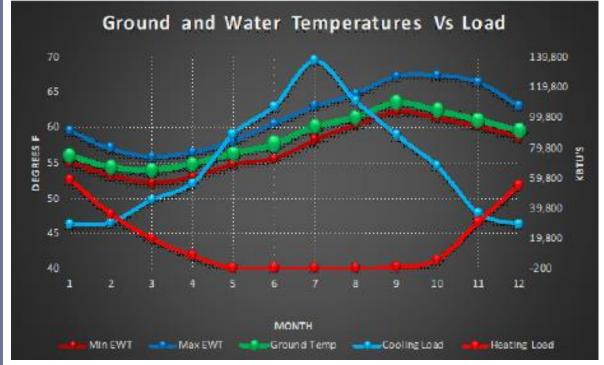
SITE ENERGY USE (KBTUS)	ENVELOPE IMPROVEMENTS (WALL AND ROOF PLUS WINDOWS)	LIGHTING UPGRADES (WITH ENVELOPE IMPROVEMENTS)	GROUND SOURCE HEAT PUMP SYSTEM (WITH LIGHTING AND ENVELOPE IMPROVEMENTS)		
Lighting (Interior)	615,852	298,820	298,820		
Lighting (Exterior)	21,683	15,178	15,178		
Plug/Process Loads (Electrical)	577,542	577,542	577,542		
HVAC - Pumps	17,422	18,026	76,712		
HVAC - Fans	349,866	321,257	198,302		
HVAC - Electrical (Cooling)	251,553	215,376	143,577		
HVAC - Electrical (Heating)	0	0	108,041		
Electrical Subtotal Site Energy	1,833,919	1,446,198	1,418,172		
HVAC (Thermal-Heating)	403,406	463,561	0		
DHW (Thermal)	165,597	165,597	0		
Thermal Htg Subtotal Site Energy	569,003	629,158	0		
Total Site Energy	2,402,922	2,075,356	1,418,172		
Calculated Site EUI (kBTU/SF/Year)	37.4	32.3	22.1		
Modelled Incremental Energy Savings*=	934,857	1,262,423	1,919,608		
Modelled % Savings =	28%	38%	58%		
Energy Cost					
Electrical Cost	\$76,323.71	\$60,187.61	\$59,021.22		
Natural Gas Cost	\$3,470.92	\$3,837.86	\$-		
Total Cost	\$79,794.63	\$64,025.48	\$59,021.22		
Cost Savings*=	\$14,608.53	\$30,377.68	\$35,381.93		
Proposed % Savings=	15%	32%	37%		

Photo-Voltaic Array

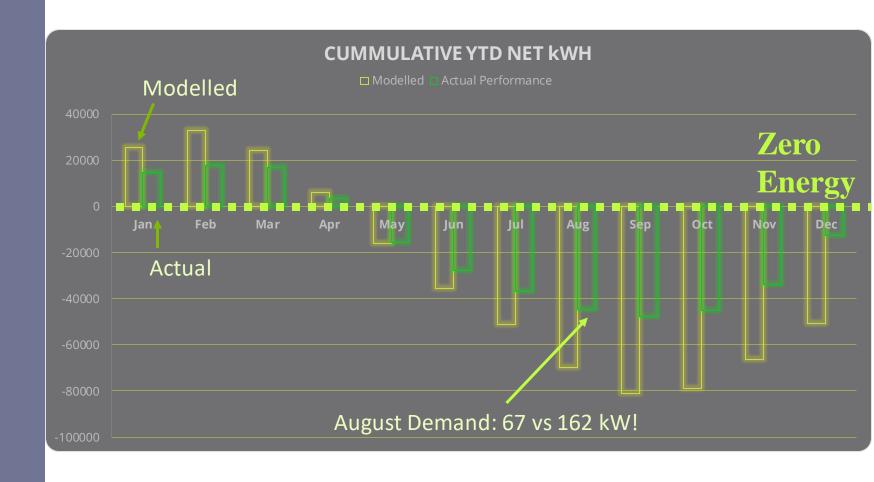
Target = 448,000 kWh/yr

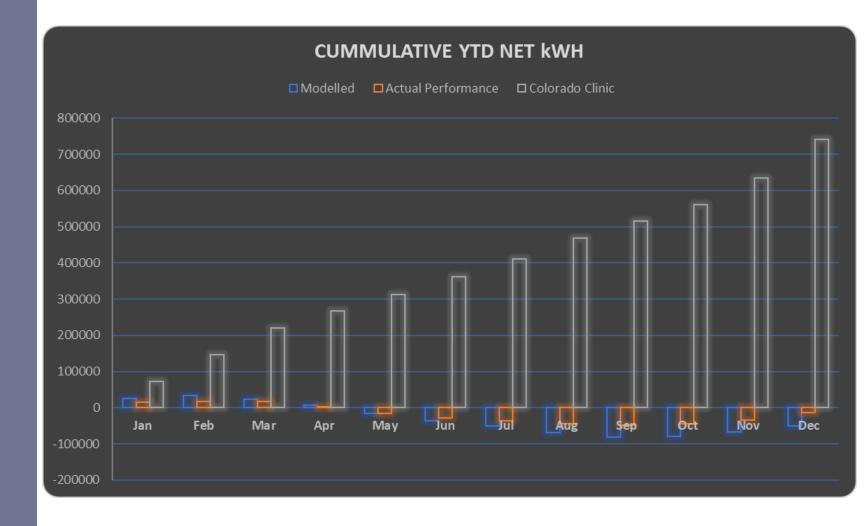

Actual Produced = 449,280 kWh/yr

ENERGY MODEL RESULTS & EXPECTED ENERGY USE (2 OF 2)


ENERGY PRODUCTION	11/4/2019 2013 APPENDIX G BASELINE HAP MODEL	6/12/2020 ENERGY Model As- Designed
Photovoltaic - Site Energy production (kbtuh/yr)	2,538,528	1,528,576
Photovoltaic - Array Size (KW)	465	280
Total PV Energy Production Required- Site	2,518,280	1,416,776
Total PV Energy Production Required - Source	7,932,582	4,462,846
Net Zero Status (Total Source Energy - Total Source Total Source Energy Production < or = 0)	-63,781	-352,169
Net Zero Source EUI	-1	-6

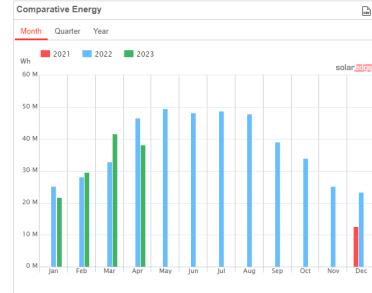
Ground Source Heat Pumps


GROUND SOURCE HEAT EXCHANGE SCHEDULE	INITIAL VALUES		
Total Bores/GPM	32 Bores/190 GPM		
U-Bend Depth from Bottom of Header Trench	500'		
Min. Grout Thermal Conductivity	0.9 Btu/hour-FT-°F		
Soil Thermal Conductivity	1.2 Btu/hour-FT-°F		
Soil Thermal Diffusivity (Estimated)	1.30 ft²/day		
Undisturbed Soil Temperature	54 °F		
Fluid	Potable Water, 15% PG		
Min/Max Entering Water Temperature	40/80 °F		
Min/Max Leaving Water Temperature	30/90 °F		
U-Bend Material	1-1/4" HDPE SDR 11		
Peak Cooling/AEFLH	62.5 tons/1300 hours		
Peak Heating/AEFLH	60,000 kBtuh/1040 hours		


Simplified, Smaller Mechanical Room

Key Element #4:
Actually Do PostOccupancy
Measurement &
Verification

PCHC compared to existing 47,000 sf Colorado Ave. Clinic (baseline)



Key Element #5:Continuous Training

Key Takeaways

- Owner buy-in
- Team collaboration with a "what if?" attitude
- Zero Energy doesn't have to be complicated or expensive
- Think total life-cycle costs of building
- Think community impact

Thank you!

Any questions?

Mike Wolf mwolf@f-w.com Corey Chinn <u>cchinn@f-w.com</u> Amanda Occhi aocchi@f-w.com